184 research outputs found

    Solitary, Explosive, Rational and Elliptic Doubly Periodic Solutions for Nonlinear Electron-Acoustic Waves in the Earth’s Magnetotail Region with Cold Electron Fluid and Isothermal Ions

    Get PDF
    A theoretical investigation has been made of electron acoustic wave propagating in unmagnetized collisionless plasma consisting of a cold electron fluid and isothermal ions with two different temperatures obeying Boltzmann type distributions. Based on the pseudo-potential approach, large amplitude potential structures and the existence of Solitary waves are discussed. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation for small but finite amplitude electrostatic waves. An algebraic method with computerized symbolic computation, which greatly exceeds the applicability of the existing tanh, extended tanh methods in obtaining a series of exact solutions of the KdV equation, is used here. Numerical studies have been made using plasma parameters close to those values corresponding to Earth’s plasma sheet boundary layer region reveals different solutions i.e., bell-shaped solitary pulses and singularity solutions at a finite point which called “blowup” solutions, Jacobi elliptic doubly periodic wave, a Weierstrass elliptic doubly periodic type solutions, in addition to the propagation of an explosive pulses. The result of the present investigation may be applicable to some plasma environments, such as earth’s magnetotail region and terrestrial magnetosphere

    Dust-Acoustic Solitary Waves in Magnetized Dusty Plasma with Dust Opposite Polarity

    Get PDF
    The nonlinear propagation of small but finite amplitude dust-acoustic solitary waves (DAWs) in magnetized collision less dusty plasma has been investigated. The fluid model is a four component magnetized dusty plasma, consisting of positive and negative dust species, isothermal electrons and ions in the presence of an external magnetic field. A reductive perturbation method was employed to obtain the Zakharov Kuznetsov (ZK) equation for the first-order potential. The effects of the presence of positively charged dust fluid, the external magnetic field, and the obliqueness are obtained. The results of the present investigation may be applicable to some plasma environments, such as cometary tails, upper mesosphere and Jupiter\u27s magnetosphere

    Evaluation of Effectiveness between Two Different Facilities for Drinking Water Having Different Water Sources for Removal of Free-Living Amoeba in Qalyubia Governorate, Egypt

    Get PDF
    Background: Conventional drinking water treatment plants (CDWTPs) and Ground water (GWTP) are the main 2 types of drinking water treatment using freshwater as a source for drinking water in Egypt. Objective: The Egyptian standards for drinking water denied the presence of any type of living protozoa in drinking water produced for human use. Martials and methods: 48 water bodies were selected from Benha and Kaha districts in Qalyubia Governorate, Egypt. Mean turbidity, pH, conductivity, temperature, ammonia, nitrite, iron, manganese, magnesium and residual chlorine were recorded in each water body from two sites. Centrifuged samples were cultured on non-nutrient agar plates with Escherichia coli. Positive sample isolates were subjected to DNA extraction and polymerase chain reaction using genus and speciesspecific primers targeting the internal transcribed spacer region (ITS) and Mp2CL5 gene. Results: The prevalence of Naegleria species, N. fowleri and Acanthamoeba in the study area were 54.1% and 0% (N. fowleri and Acanthamoeba) of all sample examined. The removal of free-living amoebae from drinking water, it was shown that conventional DWTP (Benha) could get rid of 91% of FLAs present in the raw untreated water, while ground DWTP removed only 55.6% of these organisms. Conclusions: The conventional drinking water treatment system for surface water was better than that of only chlorine disinfection for ground water in removing free-living amoeba (FLAs). In general, the persistence of FLAs in drinking tap water unfortunately exerts public health hazards

    Time-Fractional KdV Equation: Formulation and Solution using Variational Methods

    Full text link
    In this work, the semi-inverse method has been used to derive the Lagrangian of the Korteweg-de Vries (KdV) equation. Then, the time operator of the Lagrangian of the KdV equation has been transformed into fractional domain in terms of the left-Riemann-Liouville fractional differential operator. The variational of the functional of this Lagrangian leads neatly to Euler-Lagrange equation. Via Agrawal's method, one can easily derive the time-fractional KdV equation from this Euler-Lagrange equation. Remarkably, the time-fractional term in the resulting KdV equation is obtained in Riesz fractional derivative in a direct manner. As a second step, the derived time-fractional KdV equation is solved using He's variational-iteration method. The calculations are carried out using initial condition depends on the nonlinear and dispersion coefficients of the KdV equation. We remark that more pronounced effects and deeper insight into the formation and properties of the resulting solitary wave by additionally considering the fractional order derivative beside the nonlinearity and dispersion terms.Comment: The paper has been rewritten, 12 pages, 3 figure

    The 5′ Flanking Region and Intron1 of the Bovine Prion Protein Gene (PRNP) Are Responsible for Negative Feedback Regulation of the Prion Protein

    Get PDF
    Transcription factors regulate gene expression by controlling the transcription rate. Some genes can repress their own expression to prevent over production of the corresponding protein, although the mechanism and significance of this negative feedback regulation remains unclear. In the present study, we describe negative feedback regulation of the bovine prion protein (PrP) gene PRNP in Japanese Black cattle. The PrP-expressing plasmid pEF-boPrP and luciferase-expressing plasmids containing the partial promoter fragment of PRNP incorporating naturally occurring single-nucleotide or insertion/deletion polymorphisms were transfected into N2a cells. Transfection of pEF-boPrP induced PrP overexpression and decreased the promoter activity of PRNP in the wild-type haplotype (23-bp Del, 12-bp Del, and −47C). Reporter gene assays further demonstrated that the 12- and 23-bp Ins/Del polymorphisms, which are thought to be associated with Sp1 (Specific protein 1) and RP58 (Repressor Protein with a predicted molecular mass of 58 kDa), in intron1 and the upstream region, respectively, and an additional polymorphism (−47C→A) in the Sp1-binding site responded differently to PrP overexpression. With the −47C SNP, the presence of the Del in either the 23-bp Ins/Del or the 12-bp Ins/Del allele was essential for the negative feedback caused by PrP overexpression. Furthermore, deletion mutants derived from the wild-type haplotype showed that nucleotides −315 to +2526, which include the 5′-flanking region and exon1, were essential for the response. These results indicate that certain negative feedback response elements are located in these sequences, suggesting that regulation by transcription factors such as Sp1 and RP58 may contribute to the negative feedback mechanism of PRNP
    corecore